Papers
- M. Laib, R. Aggoune, R. Crespo, P. Hubsch,
Steel Quality Monitoring Using Data-Driven Approaches: ArcelorMittal Case Study, 2022,
Lecture Notes in Computer Science, vol 13377.
Paper
- M. Kanevski, M. Laib, Unsupervised Learning of High Dimensional Environmental Data
Using Local Fractality Concept. In: Del Bimbo A. et al. (eds) Pattern Recognition.
ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science,
vol 12666.
Paper
- U. Iffat, E. Roseren, M. Laib, Dealing with High Dimensional Sequence Data in Manufacturing.
Procedia CIRP, 2021, 104, pp. 1298–1303.
Paper
- F. Guignard, M. Laib, F. Amato, M. Kanevski, Advanced analysis of temporal data
using Fisher-Shannon information: theoretical development and application in geosciences, 2020,
Frontiers in Earth Science, 8:255.
arXiv:1912.02452/
Paper
- F. Amato, M. Laib, F. Guignard, M. Kanevski, Analysis of air pollution time series using
complexity-invariant distance and information measures, 2020,
Physica A: Statistical Mechanics and its Applications, 547:124391.
arXiv:1909.11484/
Paper
- M. Laib and M. Kanevski, A new algorithm for redundancy minimisation in geo-environmental
data, 2019. Computers & Geosciences, 133 104328.
Paper
- M. Laib, F. Guignard, M. Kanevski, L. Telesca, Community detection analysis
in wind speed-monitoring systems using mutual information-based complex network, 2019/04.
Chaos: An Interdisciplinary Journal of Nonlinear Science, 29 (4) p. 043107.
arXiv:1809.00511/
Paper
- L. Telesca, F. Guignard, M. Laib, M. Kanevski, Analysis of temporal properties of extremes of wind
measurements from 132 stations over Switzerland, 2019.
arXiv:1808.08847/
Paper
- L. Telesca, M. Laib, F. Guignard, D. Mauree, M. Kanevski, Linearity versus non-linearity in high frequency multilevel
wind time series measured in urban areas, Chaos, Solitons & Fractals, 120 (2019), pp. 234-244.
arXiv:1808.07265 /
Paper
- F. Guignard, M. Lovallo, M. Laib, J. Golay, M. Kanevski, N. Helbig, L. Telesca, Investigating the time dynamics of
wind speed in complex terrains by using the Fisher–Shannon method, 2019, Physica A: Statistical Mechanics and its
Applications, 523 pp. 611-621.
arXiv:1807.11849 /
Paper
- M. Laib, M. Kanevski, A novel filter algorithm for unsupervised feature selection based on a space
filling measure. Proceedings of the 26rd European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning (ESANN), pp. 485-490, Bruges (Belgium), 2018.
Paper
- M. Laib, L. Telesca, M. Kanevski, Long-range fluctuations and
multifractality in connectivity density time series of a wind speed monitoring network,
Chaos: An Interdisciplinary Journal of Nonlinear Science, 28 (2018) pp. 033108.
arXiv:1708.04216 /
Paper
- M. Laib, J. Golay, L. Telesca, M. Kanevski, Multifractal analysis of the time series
of daily means of wind speed in complex regions, Chaos, Solitons & Fractals, 109 (2018)
pp. 118-127, arXiv:1710.01490 /
Paper
- M. Laib, L. Telesca, M. Kanevski, Periodic fluctuations in correlation-based
connectivity density time series: application to wind speed-monitoring network in Switzerland, Physica A:
Statistical Mechanics and its Applications, 492 (2018) pp. 1555-1569
arXiv:1708.03782 /
Paper
- M. Laib, M. Kanevski, Spatial Modelling of Extreme Wind Speed Distributions in Switzerland,
Energy Procedia, 97: 100-107, 2016.
Paper
- I. Rezgui, Z. Gheribi-Aoulmi, M. Laib, La méthode combinatoire (s) pour la construction de
quelques types de plans en blocs incomplets partiellement équilibrés et le R-package "CombinS" associé,
Sciences & Technologie A– N°42, Décembre (2015), pp. 15-22.
Paper
- A. Boudraa, Z. Gheribi-Aoulmi, M. Laib, Recursive Method for Construction of Resolvable Nested
Designs and Uniform Designs Associated, International Journal of Research and Reviews in Applied Sciences
17 (2), 167, 2013.
Paper
Conferences
- R. Aggoune, M. Laib, A Genetic Algorithm for Feature Selection Applied to Data From
Multiples Sources: Application to Manufacturing Data. 23ème congrès annuel de la Société Française
de Recherche Opérationnelle et d’Aide à la Décision, INSA Lyon, Feb 2022, Villeurbanne -
Lyon. Abstract
- M. Laib, F. Guignard, M. Kanevski, L. Telesca, Analysis of Wind Time Series Using Network Science and Multifractal Concept,
EGU General Assembly 2019, Vienna. Poster
- M. Laib, J. Golay, F. Guignard, M. Kanevski, Deep Learning for Remote Sensing Scene Classification: A Simple and High-Performance Architecture,
EGU General Assembly 2018, Vienna. Poster
- M. Laib, J. Golay, L. Telesca, M. Kanevski, Spatial mapping of the multifractal parameters of wind time series in Switzerland,
EGU General Assembly 2018, Vienna. Poster
- J. Golay, M. Laib, M. Kanevski, IDmining: An R Package for Mining Large Datasets with the Morisita Estimator of Intrinsic Dimension,
EGU General Assembly 2018, Vienna. Poster
- M. Kanevski, M. Laib, Analysis of high dimensional environmental data using local fractality concept and machine learning,
EGU General Assembly 2018, Vienna. Abstract
- M. Laib, L. Telesca, M. Kanevski, Multifractal analysis of wind speed connectivity time series,
Swiss Geoscience Meeting, Davos 2017. Poster
- M. Laib, L. Telesca, M. Kanevski, Modelling environmental data using unsupervised feature selection,
Spatial Statistics 2017, Lancaster. Poster
- M. Laib, M. Kanevski, Network Analysis for High Frequency Wind Speed, EGU General Assembly 2017, Vienna.
- M. Laib, M. Kanevski, Modelling Wind Data using Network and Time Series
Analysis, Swiss Geoscience Meeting, Geneva 2016. Poster
- M. Laib, M. Kanevski, Analysis and Modelling of Extreme Wind Speed
Distribution in Mountainous Regions, EGU General Assembly 2016, Vienna. Poster